
Semantic Entity Relationship Management
Thorsten H. Niebuhr

A White Paper by WedaCon Informationstechnologien GmbH

1 Abstract

It requires a consistent reorientation and
adjustment of current technologies and methods
to meet the upcoming challenges of identity
management. With this White Paper we would
like to introduce the latest development of our
Entity Relationship Management system. The
system new feature consistently manages and
displays all types of entities and their
connections to each other based on semantic and
ontology approaches.

2 Introduction

Identity and Access Management (IAM) and the
'sister-discipline' Identity Access Governance
(IAG) are an integral part of the IT
infrastructure in medium and large businesses.
These systems manage internal user accounts
for employees, system administrators and
partners. Increasingly, access rights and
accounts of customers and suppliers are
considered in an IAM compliant view as well.

This expansion of IAM/IAG application
spectrum will increase even further in the
coming years. Specifically the emergence of the
'Internet of Things' would make inclusion of
“things” into the scope of IAM/IAG system
necessary, because these elements often act on
the users behalf, or in direct relation with the
user.

Today's IAM/IAG systems and processes are
mostly not designed to meet those expected and
anticipated requirements.

This white paper presents our view on a few
identified problems with the current IAM/IAG
solutions in section 3 and how we attempt to
address them in sections 4 and 5. Sections 6 and
7 present the current status of development and
milestones.

3 Limitations of current IAM
Systems

Current IAM systems have limitations in
respect to a number of functions required for
modern and future ready management of digtial
identities of any kind. Innovative attempts are
necessary to take IAM/IAG to a new level and
meet demands of the 21st century.

Human-Machine Communication

Identity management involves defining what
users can do on the network and IT systems
with specific devices and services, and under
what circumstances. Definitions of such access
and accounting policies for IAM system
processes and workflows performing
authorization assignment provisioning is today
done using machine optimized polic language.
The origin of these policies is however made by
the business, in natural language. The policies
have to be translated to technical representation
requiring close collaboration of the business
requesting and technical acting teams.

Policy Management

Additionally the policies are in most cases not
centrally managed, but are specific to the
programs being integrated with the IAM system.
On one hand this is driven by the different
demands of the target systems APIs, on the
other hand many IAM/IAG solutions offer a
fixed set of components exchanging and sharing
data in a rather proprietary way and does not
allow for flexible control.

Back-end Systems

SQL-Databases and LDAP Directory services
are the most commonly used back-end systems
for IAM/IAG solutions. Modern, highly scalable
and for those purpose optimized back-end
systems are rare in the IAM/IAG world and are
mostly only available as 'Add-on' (and
additional data silo).

© WedaCon Informationstechnologien GmbH 2016

Master Data Management

The discipline of master Data Management, the
Management of the enterprise data 'offside' user
accounts in todays IAM/IAG invironment, is
rather exceptional than a rule. Departments,
subsidiaries, adresses or other general
information like zip-codes and location data
usually are managed in external data sheets.

Semantic capabilities

Due to missing Master Data Management
information is not used as information in
purpose of an semantic approach, but in form of
data for date. A time stamp is only used as a
number or even a string.

Scalability

IAM/IAG Systems, which have their origin in
the early days of IDM usually scale rather poor
on behave of the back-end systems not
designed for today's requirements. In contrary,
modern IAM/IAG systems have an advantage
here, but still miss out on required classic
enterprise functions. Here we often see a
difference of cloud born solutions and those that
were offered on the market before scalability
and cloud functionality was required.

Entities vs. Identities

Indentities and people (User-Centric IAM) are
the primary concern of Identity Management.
Other entities (things, divisions, subsidiaries,
units, relations) are arranged around the identity
(=person). The management of these other
entities is usually not consistent with IAM-
specific approaches but instead with additional
data silo.

Modular vs. Monolith

IAM/IAG- Systems, which present themselves
as a 'one piece solution' are in most cases
monolithic conceptualized. This complicates the
management and leads to system dependencies.
Modular performing systems on the other hand
perform rather poor with each other for the
simple reason that they come along as an add-on

and not as a module.

Flexible Adjustments

Perhaps the number one problem in IAM/IAG:
The system complexity (and also the
continuously growing rulesets they are based
upon) complicates a flexible adaptation and the
necessary new adjustments, as for example in
provisioning or reorganisation of companies.

Authorization and Obligation

The job of an IAM/IAG system is the
authorization 'who is authorized to') of access.
The control of responsibilities (‘who is in
charge (obligation)’) is often overlooked.
Failing to respond to one of these basic
questions inevitably leads to the necessary use
of tools checking compliance and re-
certification.

Rapid Deployment

Installation, system maintenance and extensions
on existing IAM/IAG- Systems take up
significant time. As previously mentioned, the
primary reasons are the complexity of
prevailing monolithic architecture and poor
communication between system modules. Even
federal approaches often fail on behalf of the
complicated structure of SAML and Co.

Standards

The existing standard’s such as: SCIM, REST,
SAML, OAuth2, openID should promote
interoperability, however most IAM/IAG
provider use proprietary solution. We admit
things have increasingly improved in the last
years; nevertheless we are still fare away from
the aim.

© WedaCon Informationstechnologien GmbH 2016

4 Semantic Entity Management

The basic idea of our new approach lies in the
possibility of extending processes and
requirements of IAM / IAG - systems on all
possible entities, and combines it with a
semantic structure.

As background, we would like to take a little
trip into philosophy: Already the ancient Greeks
were meditative the question about concepts of
entity, a concrete thing or abstract object: a
defined 'being'. The common name of the entity
in parlance relates (philosophical) to so many
different elements such as things, relations,
characteristics, facts or events.

On the other hand, an entity can also represent
the ‘nature’ of a thing, an essential property for
the existence of the thing itself.

To describe entities in term of their capabilities
and their reality, we can use ontologies.

In the recent years of 'semantic Web'
development Ontologies have gained
importance in computer science. An ontology is
a conceptual model of observed reality; a
repository of interlinked concept pertaining to a
given application domain. Ontologies have
outranked the taxonomic approaches that allow
only hierarchical classifications.

Coming back to the IAM domain: how could an
entity be categorized using ontology in familiar
IAM structures?

Lets use countries as example, which are
represented by a string in a table column in most
IAM systems. In a data model, which uses
ontologies there is no table with possible
(active) countries used, instead it refers to an
Ontology describing countries, which do not
necessarily lie in the 'domain' of the
organization. This makes a statement such as
'Spain is a country' (subject-predicate - object)
possible and turn the date (string) 'Spain' into a
concept that has properties and relations making
more than a string.

Illustration of a simple ontology: Spain is a european
country which shares a border with France. Both are
EU-Countries.

When speaking of Ontology we speak of classes
of entities and instances of these classes:
individual entities. They are related to each
other through inheritance and relations defined
by properties. Additional 'knowledge' can be
added using axioms.

The advantage of ontologies above non
semantic data representation lies not only in the
presentation of knowledge (their computational
usability), but in relations providing richens of
contextual description to data.

These relations not necessarily need to be
known during the 'design' of ontology; they can
be computationally develop from the existing
knowledge, and are then available as 'new'
knowledge.
Ontology can be represented as a set of 'triples'
(subject-predicate-object statements): the same
representation is also used in graph databases.

Graph databases are todays preferred engines
within ‘Social Networks’ to store relations
between people. Similarly the relation stored in
the graph database are used in e-commerce to
display and recommend 'similar' products or
additional services of interest based on what
were bought by other customers with similar
profiles. These technologies offer scalability,
what is already presented in these examples.

Graph Databases store 'nodes' (the individual
instances, for example 'Spain') as well as their
'edges' (relations to other nodes). Nodes and
edges are expanded and further defined by their

© WedaCon Informationstechnologien GmbH 2016

properties. A big advantage on graph databases
is that these structures are not required to be
known in advance, as it is true for databases and
directories.

This coincides in high degree with ontology, as
ontology can be perceived as a graph.
The combination of scalability provided by
Graph Databases with ontological models of a
semantic make Entity Relationship Management
system development possible, allow to repeal a
huge number of the limitations of today's IDM
Systems.

Furthermore, ontologies make writing policies
and rules in 'natural language' possible by using
the ontology concepts, which are understood to
humans, as constructs, which nevertheless are
directly 'machine-readable'.

The IHMC (Institute for Human and Machine
Cognition) in Florida, USA has a great
reputation on semantically managed System
integration, and we are very proud and happy to
have them on board for our journey.

Based on concepts of positive and negative
evaluation of authorization (granted / denied)
and obligation (required / waived) our system
allows to create the relevant policies in
constrained natural language. In a case of policy
conflict (e.g. required but forbidden; Figure 2),
the system automatically tries to resolve the
conflict based on predefined algorithms.

A [User] is [required] [to] [reset] his
[Password] [every 90 days] .

Example of a policy above uses concepts from
ontology (in square brackets).

Another example in which ontology shows its
strength is in central filing of provisioning rules
in and from connected systems, such as schema
mappings (Figure 3 and Figure 4).

Let’s have a look on a typical usage scenario in
IAM Systems: When did the person last login
occur?

A semantic system does not simply store the
timestamp; it stores the fact that it represents a
point in time, whatever format is chosen for
storage.

Other useful information that we can derive
from this fact and use/proved via ontologies
could be

• the Format,
• Conversation Factors,
• origin (Unix, db, ad, LDAP).

© WedaCon Informationstechnologien GmbH 2016

Types of policy conflict

Ontology representing concepts related to login

Ontology on relations between different forms of
timestamp representations

5 MicroService Architecture

Modern system architectures and development
methods use slim processes; with short, iterative
cycles and constant improvement of the
implemented elements. This approach has not
arrived in the IAM/IAG world yet. Still, large
monolithic systems are being developed that in
best case are extendable by plugins and add-ons.

Applications servers, originally thought to be a
container for multiple services and applications,
are most often suffering from interdependencies
between the hosted JAR, WAR or EAR
packages or simply share the same system
ressources. The common 'solution' to this is to
deploy more application servers and distribute
the applications on them. Ask yourself: How
many application server instances do you have
running, and how many applications do they
provide per instance?

A modern architecture must above all support
one paradigm - Rapid Deployment. This is not
limited to usage of Dockers or similiar
approaches and methods.

Our Micro Services are an approach/method to
IAM/IAG system development that follows the
methodology of Rapid Deployment. The main
characteristics of MicroService architectures
are:

 The ability to easily exchanging single
components of the architecture.

 Smart endpoints & (less smart)
interpoints.

 Complete redevelopment of components
within shortest time (approximately 14
days)

 Fast (automated) Infrastructure

 A MicroService is specialized in
performing its roles, and no more. It's
purpose determines it's function, not the
technology.

Micro Services are also associated with
decentralized data storage (persistence) and are
dynamically connected to each other.

The Micro Services architecture consists of few
layers which have well defined input and output
functions to the respective layers.

The first layer (Controller) provides
MicroServices self-description and control
functions:

• status
• who am I
• who are my neighbors
• what is my task

This layer facilitates the dynamic connection
between Services.

The second layer (Transform) is responsible for
the actual task the MicroService got assigned.
Its the workhorse accepting data streams which
are manipulated according to its functions.
When the transformation is completed, the
resulting data stream is forwarded to the output
layer.

The appropriate transformation rules are
obtained from the Ontology/GraphDB
component for its 'position' and job in the
system architecture and performs the
transformation of input data based on it.

© WedaCon Informationstechnologien GmbH 2016

Micro Service Architecture Example

The persistency of Service state is realized by
Persistancer layer (through which
communicationbasically takes place).
The transformations at this point also consults
the Policies System, in which obligation
(required / optional) and authorization
(allowed/prohibited) and possible conflicts
(required but prohibited) are evaluated and
applied to the process data and transformation.

A Micro Service in our environment in first
place has a no function 'per se', but gets its
'purpose' directly and dynamically in form of
notification by the ontology. Micro Service
acting in this environment can operate on more
'complex' or 'smart' features, or only 'simple'
activities.

Typical purposes for 'simple', less smart
MicroServices

 Transliteration of characters (ü → ue)

 Transformations and conversions

 Regex Tests

Typical complex (smart) purposes

 Connecting external Applications and
API

 Transformation in Standards (SAML
Request, OpenID, SCIM, LDAP, etc)

6 Current status

In cooperation with our customers and by
partnering with IHMC (Florida Institute for
Human and Machine Cognition) we have
already successfully implemented and tested a
large part of planned components in interaction
with our product 'YIAMSuite' during the past
months.

YIAMSuite is an IAM solution which
consideres relational interactions between
Master Data and Identity Data, and already
provides intense Entity Management skills since
2011.

7 Perspectives

With the solution developed by WedaCon and
our partners, as well as with our more than 15
years of experience IAM/IAG range we feel
perfectly prepared to take Indentity
Management to the next level and essentially
influence the area of Entity Relationship
Management (ERM).

Contact

WedaCon Informationstechnologien GmbH
Krögerweg 29

D- 48155 Münster

www.wedacon.net
info@wedacon.net

© WedaCon Informationstechnologien GmbH 2016

Entity Relationship Management System

	1 Abstract
	2 Introduction
	3 Limitations of current IAM Systems
	Human-Machine Communication
	Policy Management
	Back-end Systems
	Master Data Management
	Semantic capabilities
	Scalability
	Entities vs. Identities
	Modular vs. Monolith
	Flexible Adjustments
	Authorization and Obligation
	Rapid Deployment
	Standards

	4 Semantic Entity Management
	5 MicroService Architecture
	6 Current status
	7 Perspectives

